
Abstract A suitably defined distance is the simplest pa-
rameter for measuring the difference between two posi-
tions, orientations, and/or conformations of a molecular
system. Distances also provide a first guess for the reac-
tion coordinates of activated processes. It is shown here
that mass-weighted distances possess remarkable me-
chanical and statistical mechanical properties. They al-
low us to restrict motions to internal coordinates of a
molecule in a simple way where this demand makes
sense. Moreover, the computation of free energy changes
and rates is facilitated by simple explicit formulae. The
numerical treatment of a rate process in a peptide, the
ring flip of a phenylalanine, demonstrates the practical
application of our results. It also indicates the role of in-
ternal friction in macromolecules and the need to consid-
er transmission coefficients.

Keywords Reaction coordinate · Constrained dynamics ·
Targeted molecular dynamics · Free energy · 
Thermodynamic integration

Abbreviations rc: reaction coordinate · mep: minimum
energy path · MD: molecular dynamics simulation ·
TMD: targeted molecular dynamics simulation · 
rms: root of mean square · pdf: probability density 
function · TI: Thermodynamic Integration

Introduction

The concept of a reaction coordinate (rc) originates from
early theoretical studies of simple chemical reactions.
Typical figures display potential energy surfaces with
minimum energy paths (mep’s) and activated states posi-
tioned at saddle points, where the rc measures the way
along such a path from the initial to the final stable state.
Clearly, any coordinate that changes monotonically
along the path represents a suitable rc. In simple cases
the distance of two atoms or molecules [1] in chemical
reactions or the distance to a surface in adsorption [2]
describe the corresponding processes in a reasonable
way. Further demands on a reasonable rc are studied in
this work or discussed in the final section.

It was early recognized, however, that in general mul-
tiple pathways and free energy instead of potential ener-
gy must be considered. [3] Numerical studies of confor-
mational changes in highly structured macromolecules
suggest that mep techniques and related concepts are less
suited for finding favorable pathways. [4] This is due to
the complicated energy surface [5] containing numerous
densely lying shallow minima and maxima keeping the
pathway near to the initial guess used at the beginning.
At room temperature, on the other hand, the fine struc-
ture of the potential energy can be neglected in compari-
son with the activated states that actually determine the
rate of a conformational change. These findings suggest
applying simulations at a given temperature (and pres-
sure, if necessary) and to explore different pathways, for
instance, by variation of starting conditions.

As interesting activated processes usually do not oc-
cur during the computing time available, a bias must be
applied to enforce transitions during the simulation. For
simulating atomic force microscopy experiments on sin-
gle molecules, the cantilever position defines an ade-
quate rc of the distance type that can be controlled as in
the experiment. [6, 7] To treat spontaneous transitions
between known end structures, we proposed defining a
preliminary rc by the mass-weighted distance of a dy-
namic structure from one selected target structure, and to
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enforce the transition by decreasing the constrained dis-
tance during a molecular dynamics simulation (MD).
This technique called targeted MD (TMD) [8] has been
used by several authors, and generates pathways whose
details could be confirmed in experiments. Similar appli-
cations were based on a harmonically restrained distan-
ces. [9]

This work deals with the theoretical basis of distance-
type rc’s. We address two problems of particular interest
for the use of distance coordinates: the restriction of the
molecular motions to internal coordinates and the calcu-
lation of the free energy change as a function of the dis-
tance. For the first problem, a simple and practicable
prescription is developed to find a set of directions for
the simultaneous shift of all atoms that allows us to find,
for instance, a reasonable pathway of a conformational
change. Without explicit proof, we have already used it
in a recent numerical investigation of a protein in sol-
vent. [10]

Early calculations of the free energy or potential of
mean force used an angle or particle distance coordinate.
[1, 11] A general formalism for arbitrary coordinates was
given by Elber. [12] Mülders et al. [13] discovered that,
at constrained rc, the mean force is identical with the
negative mean constraint force, which enables an easier
access to numerical values. Later this approach was gen-
eralized [14, 15, 16] by including possible metric tensor
effects of constraints. [17] In the section on statistical
mechanical properties, we use [13] to derive an exact an-
alytical expression for the change of free energy con-
nected with a distance rc. The numerical example of a
rate process demonstrates the application of this part of
our results, the computation of free energy for equilibria
and transition rates.

Definition of distances

Consider a system with 3N Cartesian coordinates or 
N position vectors in a configuration x, given by
x=(x1...x3N)=(r1...rN). This system may be part of a larger
system considered as an environment that interacts with
the system under consideration. It is assumed that a mass
mi belongs to each cartesian coordinate xi, and some ad-
ditional mass m* is defined. Mass-weighting of the coor-
dinates is introduced by factors which will
have an analogous meaning when used together with po-
sition vectors. [8] For two configurations x and y we
now define the distance D by

(1)

where y=(y1...y3N)=(s1...sN) is a reference configuration.
It is not in general identical with the geometric distance
as long as the masses mi are different. If, however, the
masses are not too different and m* is chosen to be the
mean mass m*=M/N of a system of total mass M, then D
is approximately the geometrical distance of x and y in

configurational space, and the rms distance between the
configurations if m* is set equal to M.

The formalism covers two cases where D has a simple
meaning:

a) Distance from a surface. To describe adsorption of a
molecule on a plane surface x1=0, the first sum in (1)
is restricted to x1, which then denotes the center of
mass (com) distance of the molecule from the surface.

b) Two-particle distance. With the restriction to N=1, D
can describe the (mass-weighted) distance between
two atoms or the com of two molecules at positions r
and s, respectively, which is interesting for associa-
tion/dissociation reactions.

In general, when the sums in (1) run over all coor-
dinates of a molecule one may distinguish three cases
where D has a particular meaning:

c) Distance between two configurations in a fixed envi-
ronment. If a molecule is bound or adsorbed on a sur-
face at two different positions, orientations, and/or
configurations x and y, D provides a quantitative
measure of the difference between the two. An exam-
ple of this kind is investigated numerically in this
work.

d) Distance between conformers. If the structure x of a
molecule has been superimposed on the reference
structure y (or vice versa) by first translating and then
rotating x in order to minimize the distance, then the
remaining D measures the structural (rms) distance
between the conformers. It then satisfies the condition

(2)

This sort of distance is used by the TMD method.
e) Radius of gyration. D is identical with the radius of

gyration when all reference positions sj are replaced
by the position of the com R and m*=M, as then

(3)

This obviously is a special case of (d). The minimum
condition (2) is fulfilled by inserting the actual current
com R.

For all cases mentioned, the distance not only mea-
sures a difference, but also can be a meaningful rc when
a transition between different states of the system is con-
nected with a monotonic change of the corresponding
distance. In the following we investigate the theoretical
properties of D when used as an rc. The advantages and
possible problems connected with a predefined rc are ad-
dressed in the discussion.

Mechanical properties

Consider a dynamics simulation where x(t) is kept at a
given distance D0 from a reference y in order to sample
configurations for suitable mean values. The reference y
may be fixed as assumed for cases (a) and (c), or move
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independently of x(t) in case (b). In order to solve the
equations of motion in Cartesian coordinates, one must
introduce a constraint

(4)

which results in constraint forces

(5)

They are obtained from (4) as derivatives with respect to
rj at fixed sj. The common Lagrange parameter f c de-
notes the strength of the constraint force. Note that one
obtains formally the same constraint forces when D is to
change with a given velocity (D

.
=const).

The interesting case (d), and therefore also (e), need
special attention because the additional condition (2) de-
mands that the reference is no longer fixed, but is perma-
nently adapted to x(t). As the distance D(x)=D(x;y) now
depends on x directly and indirectly via y, its derivatives
read

(6)

More precisely, the sum results from the fact that the ref-
erence structure y(t)=(s1(t)...sN(t)) is connected with an
original fixed reference structure y0=(s1

0...sN
0 )and the mo-

mentary structure x(t)=(r1(t)...rN(t)) by a transformation

(7)

where T is the product of translation and subsequent ro-
tation. In accordance with (2), we now claim that D is
minimal with respect to T. As a consequence, the deriva-
tives with respect to the sk are zero, which makes the
sum term vanish and proves that the constraint forces are

(8)

as above. Due to the minimum-distance property they
also take the form (5) in those cases where the reference
structure necessarily moves with the dynamic structure.
For the same reasons the differential of D becomes

(9)

and vanishes for any set of drj arising at a coordinate
transformation T. At infinitesimal translation, where all
drj are the same, one therefore has

(10)

which simply means that the centers of mass are the
same for both structures. At infinitesimal rotation about
an arbitrary angle dϕ atom j is moved by drj=dϕ ×rj. In-
serting in (9) and using the properties of the vector pro-
duct yields

(11)

As this holds for any dϕ, one obtains a second useful re-
lation for the superimposed structures, namely

(12)

The geometrical relations (10, 12) are the well known
Eckardt relations, [18] which play an important role in
the treatment of molecular vibrations. [19] Here they
have remarkable implications for the dynamic behavior
of the constrained system. By inserting (8) in (10) and
(12) it is now possible to calculate the total constraint
force [8] Fc

tot=∑f c
j and the total torque Mc

tot=∑rj×f c
j in-

duced by the constraint. The result is that both quantities
vanish, i.e. the constraints do not exert any force or
torque on the system as a whole, but act only on internal
coordinates. These are desirable properties for a reaction
coordinate.

The shifts arising from the constraint forces during a
time interval dt are

(13)

where the constant is the same for each atom j. At path-
way search, for instance, a simultaneous shift obeying
this equation can be used to move the system in terms of
purely internal coordinates provided that both structures
are superimposed according to (2).

Statistical mechanical properties

It is a well known fact that geometrical constraints can
disturb the probability density function (pdf) of the un-
constrained system in configurational space, P(qi, D),
where the qi complete the set of spatial coordinates. In
general a constraint imposed to D gives rise to a different
pdf Pc(qi; D). [17] We shall show now that this is not the
case for the distance defined above, and derive an ex-
pression for the free energy change connected with a
change of D.

As shown by Fixman [17] one has

(14)

where the so-called Fixman determinant is

(15)

For the distance (1) one easily derives det(H)=1/m*,
which is a constant. This proves that the pdf in configu-
rational space is not changed by introducing the con-
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straint D=const. Integration of either pdf over the qi
yields the same pdf P(D) for the distance D.

The connection with free energy profile A(D) is given
by

(16)

where kB is the Boltzmann constant and T the tempera-
ture. A(D) can be calculated using an important result
published previously, [13] which can be written with the
above notation as

(17)

f c is the strength of the constraint force from (5) or (8),
and the brackets denote mean values for a canonical en-
semble with D constrained. Equation (14) had originally
been derived for a constrained system with pdf Pc(qi; D).
Since it was shown that Pc(qi; D)=P(qi, D) for the pres-
ent choice of the distance coordinate, (17) holds without
modification for this case, too. It is easily seen that this
result is in accordance with the recent more general theo-
ries. [15, 16]

The constraint force f c can be calculated explicitly by
taking the second time derivative of (5) or (8). Express-
ing the velocities by kinetic energy and the accelerations
by the constraint force components (9) and the potential
force F, one obtains

(18)

Hence

(19)

The first component of the mean (constraint) force is
purely entropical as �Ekin�=fkT/2, and represents a cen-
trifugal term. The second term is the component of the
mechanical force in the direction of the distance change.
By integration of (19) over D, which is a form of ther-
modynamic integration (TI), one obtains profiles of free
energy ∆A(D)=A(D)-A(D0) that can be transformed using
(16) into probability densities P(D). Note that f is the
number of the degrees of freedom of the momenta in the
constrained system. It vanishes only if the distance is de-
fined by one single coordinate x1, see case (a), as the
constraint then removes the only degree of freedom. It
should be noticed that, for the case of an interatom dis-
tance, eq. (19) confirms the result of van Gunsteren et al.
[20] and assigns a definite value to the undetermined
constant in their equation (2.2.25).

The sampling of configurations for the average (19)
requires special attention in the vicinity of transition
states. Abnormal behavior can indicate that the distance
is not a suitable reaction coordinate for the transition un-
der consideration. This point is discussed in more detail
below.

Rate processes

First of all, the foregoing results give an easy access to
the free energy profile ∆A(D) and the probability density
P(D) along the rc. When stable states are recognized as
minima of ∆A(D), their relative statistical weights are
given by integrals over P(D) and equilibrium constants
can be calculated. Moreover, rates for the escape from
such a state over an activation barrier at D=D� can be
determined. By a careful analysis Carter et al. [21] have
derived an expression for the rate and shown that the
Fixman determinant (15), which in general is not readily
evaluated, determines the effective mass associated with
the rc chosen. The rate obtainable from transition state
theory (TST), kTST, is proportional to �det(H)–1/2�–1 at
D�. As the determinant is simply 1/m* for the distance
coordinate considered here, we can explicitly write down
the total rate as

(20)

where the integral runs over the interval belonging to the
reactant state. The effective mass of the transition turns
out to be the mass m* that was introduced above when
defining D. The transmission coefficient κ takes into ac-
count the effect of trajectories recrossing the activation
barrier. The general formulation [21, 22] of κ suggests
an explicit numerical analysis of a sample of trajectories
starting on top of the barrier.

An approximate calculation of κ seems possible on
the basis of Kramers’ theory [23] that treats the passage
over the activation barrier as a Brownian motion analo-
gous to that in a viscous medium. For this to hold, the
motion is assumed to obey a Langevin equation with sto-
chastic forces resulting in a friction coefficient. In the
analysis of measured activated processes in macromole-
cules, the resulting expression was shown to provide a
good description of both solvent effects and internal fric-
tion arising from fluctuating intramolecular forces, see
[24] and works quoted there. This indicates that systems
like the example below can be treated in the same way.
For the evaluation of a simulation with Kramers’ theory,
one needs the mean force and the fluctuations of the un-
derlying force on the barrier, which are both available.
Using the formulation by Helfand [25] κ can be written
as

(21)

where

(22)

The friction constant of Kramers’ theory was expressed
here by the autocorrelation function of f c, which vanish-
es in the mean at the transition state, � f c(D�, t)�=0 and
represents the fluctuating component. The transmission
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coefficient thus depends on the curvature of the free en-
ergy profile and the autocorrelation function, which are
easily determined.

Ring flip in a helical fragment

As a numerical example, the rotation of the phenyl side
chain in the α-helical fragment Ala–Ser–Leu–Asp–Lys–
Phe–Leu–Ser–Val–Ser (Methemoglobin 2MHB, Protein
Data Bank) was studied, see Fig. 1. The Phe ring group
can flip between two stable conformations differing by
180°. The transition was treated as an example of case
(c) with a fixed target structure of the ring group in a re-
strained environment, and is to demonstrate the calcula-
tion of equilibrium and rates of the transition using a
constrained dynamics simulation. The symmetry of the
stable conformations results in an equilibrium constant
K=1 which is known a priori and provides a first check
of the results. Because of the incomplete structure, how-
ever, the rates cannot be compared with experimental da-
ta. Therefore, we also measured the spontaneous rates
occurring in conventional MD simulations of the system
with no restrictions imposed to the side chain. All simu-
lations were performed using GROMOS87 [26] for vac-
uum conditions, weak coupling to a temperature bath
and a coupling time τT=0.01 ps and a time step of 1 fs.
Constraint dynamics was implemented as described pre-
viously. [8]

After short equilibration at 100 K, the ring was slight-
ly rotated in order to obtain a first starting configuration
x that lies off the equilibrium position. As target, one ref-
erence target configuration y with the phenyl ring rotated
by 180° was constructed by exchanging the symmetrical
ε and δ ring atoms. The rc was defined by

(23)

where the sum runs over the seven side chain atoms of
Phe. They were treated as united atoms with hydrogens
included and possess a mean mass of 13.7 amu, which
defines m*=m

_
.The remaining 94 atoms which represent

the “environment” of the constrained system, were re-
strained by a weak harmonic potential in order to prevent
the small peptide from unfolding. The initial distance is
ρo=0.51 nm, which corresponds to an rms distance of
0.19 nm per atom. Further starting configurations for the
same and higher temperatures were generated in simula-
tions with the constraint ρ=ρo.

In constrained dynamics runs over several hundred ps
with linearly decreasing distance ρ, no relaxation effects
were observed, which is due to the small size of the
system and the restraints on the system. This enables ap-
plication of the slow growth technique [27] to perform
thermodynamic integration, i.e. to use the approximation

(24)

to integrate (19). While ρ is reduced to zero quasi con-
tinuously in n≈105 steps of a dynamics run, the momen-
tary values of the constraint force are numerically inte-
grated to obtain profiles of free energy. For several runs
at different temperatures the profiles were evaluated as
described above with respect to equilibrium constants
and rates.

Figure 2 shows both a typical energy and free energy
profile (not smoothed) of a 400 ps run at 100 K as a
function of the distance ρ. The asymmetric shape reflects
the different sampling during the linear decrease of ρ in
the course of the simulation. At small ρ the free energy
must go to infinity as the entropy portion forbids a com-
plete approach to the static target structure y, which for-
mally is an effect of the centrifugal force in (18). Both
curves possess two distinct minima corresponding to the
stable end conformations I and F, respectively, the noise
being much larger for the energy. The mean energies of
conformations I and F are equal as required by the ring
symmetry. For the same reason the free energy profile is
lower at the narrow well of the initial state than at the
broad final state, which indicates equal probability for
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Fig. 1 Helical protein fragment consisting of 11 amino acids. The
conformational transition studied is a ring flip of the central Phe,
which is in contact to two Leu and one Val residues. The amide
backbone is shown in blue

Fig. 2 Profiles of energy ∆E(ρ) (black) and free energy ∆A(ρ)
(blue) obtained in a 400 ps TMD run. The stable end states appear
in both curves as minima of different width and depth, but with
the same statistical weight and mean energy
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both states. The corresponding equilibrium constant av-
eraged over three runs is K=[F]/[I]=1±0.9,the corre-
sponding free energy difference ∆AIF=–0.7±1.7 kJ mol–1

(standard deviation of single values). The variance is due
to a dependence on the starting conditions of a run, while
relaxation, which would shift K to smaller values, seems
to be negligible for the present small system.

To obtain TST rates kTST over a wide temperature
range, the first part of free energy profiles (ρ>0.35) in-
cluding the barrier was computed and evaluated using
(16) and (20) for each temperature and different start-
ing conditions. These rates, shown in Fig. 3, are aver-
ages over 3–6 runs per temperature of a maximum
length of 400 ps. They increase by more than four or-
ders of magnitude between 100 and 400 K and show a
clear Arrhenius behavior, as indicated by the dashed
line.

For comparison, the rates of spontaneous transitions
were determined between 150 and 400 K in a series of
conventional MD simulations and are also shown in
Fig. 3. No simulations were performed at even lower
temperature, as even at 150 K a simulation period of
20 ns was required to obtain the present accuracy. A
transition was counted as successful when the system
had crossed an interval of the length ∆ρ=0.04 nm at the
previously determined activation barrier. As expected,
the directly observed rates are smaller than the calculat-
ed TST rates.

The difference is well accounted for by transmission
coefficients determined from Kramers’ theory as de-
scribed above. As no solvent is present, they account for
internal friction due to interaction with neighboring resi-
dues. At 250 K, for instance, one finds κ=0.28±0.04. The
complete rates, k=κ kTST, with both κ and kTST computed
on the basis of the constraint force are in good agree-
ment with the observed spontaneous rates.

Summary

Distances provide a first guess of the rc’s for activated
processes and are being used in many applications. We
have shown that a distance D calculated from mass-
weighted cartesian coordinates has some desirable prop-
erties. Firstly, D is easily controlled without changing
the total momentum and angular momentum of the
whole system. The simultaneous displacement of all at-
oms along a certain set of direction vectors restricts the
motion to internal coordinates. In a constrained simula-
tion like TMD, [8] with constraints D=const or D

.
=const,

these directions are automatically taken under the influ-
ence of the constraint forces. For other rc’s the restric-
tion to internal coordinates requires explicit use of the
Eckardt conditions. [28] We also described two cases (a)
and (c) where the conservation of momenta plays no role
because a small group or molecule moves on the surface
of a massive body which can be considered as immobile.

Secondly, the statistical treatment is strongly facilitat-
ed by the fact that D is connected with a constant Fix-
man determinant. Hence there is no need to compensate
[14] or statistically evaluate [15, 16] the determinant,
which is a problem already when mass-weighting is
omitted in the definition of the distance (1). We have
given a simple analytical expression for the constraint
force and shown that its average in a canonical ensemble
is identical with the mean force of thermodynamic inte-
gration. Likewise TST rates can be given an explicit
form when using D as rc.

The results open a practicable way to compute pro-
files of the free energy and transition rates along the rc
D. This was demonstrated here for a simple example.
We would like to mention that the rotation of a side
chain can also be treated in a more obvious way with an
angular rc, which actually has been done before, see.
[11] Also, the number of degrees of freedom that are
really free in this example has been severely reduced by
applying harmonic restraints to most atoms of the mole-
cule. The example was chosen because it allows us to
compute transition rates over a considerable range with
two different methods and reflects the particular unusual
features of free energy profiles dependent on a distance
coordinate. It also shows the influence of internal fric-
tion and the need to consider its contribution to the
transmission coefficient as proven by the analysis of ex-
perimental data. [29, 30] In the present case Kramers’
theory describes the effect of friction quantitatively. The
computation of rates and transmission coefficients from
the constraint force yields excellent agreement with the
rates observed in the unconstrained MD simulations.
Moreover, the example shows that the proposed tech-
nique can be much more economic than the observation
of spontaneous transitions. At 150 K, for instance, it 
requires only 10% of the computing time otherwise
needed.

The restriction to a restrained fragment of a large pro-
tein made it possible to compute free energy using the
slow-growth method. In realistic applications the compu-
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Fig. 3 Transition rates for the ring flip calculated from free energy
profiles obtained in TMD runs (TST rates) and spontaneous rates
observed in MD runs (MD rates). For a clear separation of the data
sets, pure TST rates are shown without transmission coefficient
(0.28 at 250 K)



tation of mean forces is complicated by slow relaxation
processes that require long simulation times and a care-
ful check of the convergence of the mean force. [31]
This will be most important when the free energy profile
of a conformational change of a macromolecule is inves-
tigated, which has not been done yet. With increasing
computing power, however, it seems possible to tackle
this part of the problem.

In this work we have studied distance type rc’s main-
ly in view of future treatment of macromolecular confor-
mational changes where, as stated above, mep’s are not
easily determined and seem to be less appropriate be-
cause of the complicated potential energy surface. On
the other hand, despite their favorable properties, dis-
tances possess the shortcomings of global coordinates,
which are predefined regardless of the actual structure of
the energy surface. Recently Neria et al. [28] have inves-
tigated in much detail the implications of the fact that the
planes D=const (in our notation) will in general not be
orthogonal to the mep. They find two features that can
affect the numerically calculated activation energy. First,
the potential on top of the apparent barrier tends to be
relatively flat, which can adulterate the activation energy
and entropy. Second, large excursions from the reaction
path can occur near the top of the barrier and cause nu-
merical instabilities with abrupt changes of the mean
force. For their low-dimensional examples, the authors
compute a rotational correction that takes the effect of
the curvature of the pathway into account properly and
show that, depending on the circumstances, it gives a
more or less important contribution to the activation en-
ergy. One must conclude from these findings that it is al-
ways advisable to check the free energy and possibly
sensitive geometrical quantities for features, such as sud-
den jumps, indicating a problem of that kind. If they oc-
cur near the apparent transition state, a detailed analysis
of the underlying motions may give a hint how to possi-
bly change the rc locally and to correct the free energy
profile.

So far the available techniques for pathway search
and computation of free energy profiles for equilibria
and rates seem to have been tested only on small sys-
tems in order to improve the theoretical basis and nu-
merical methods. It will be desirable next to treat real-
istic problems, where the results can be compared with
experiment. Such work is in preparation in our labora-
tory.
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